UNIVERSITY OF COLORADO

╘┍

ENGINEERING CENTER NORTH TOWER & NORTH WING RENOVATION Design Development 14 January 2020

AndersonMasonDale Architects

SCHEDULE & BUDGET

MICRO-MASTER PLAN & SITE PLAN LANDSCAPE PLAN GRADING AND DRAINAGE PLAN ROOF PLAN

BUILDING ELEVATIONS & SECTIONS SUSTAINABILITY DISCUSSION

PROJECT SUMMARY

Description

The Engineering Center North Wing (the aerospace wing or ECAE) and the Engineering Center North Tower (ECNT) will be vacated in summer of 2019 as the Department of Aerospace Engineering Sciences moves to their new east campus facility. This project proposes a complete renovation of the north wing and north tower of 35,000 ASF/ 55,477 GSF

Budget

Professional Services:	\$3.44M
Construction Building:	\$20.51M
Construction Site	\$1.07M
(includes utilities, site, and landscape)	
FFE, Communication, Misc	\$4.13M
Contingency	\$2.89M
Total Project Budget	\$31.99M

Program

Lab Modules: 34 Offices: 56 GRA stations: 81 Bold Center: 3,500 sqft Projected Occupancy: 505 Grad Students: 97 Faculty: 80 Lab Stations: 58 Lounge/Conference: 270

PROJECT GOALS / SCOPE

Landscape

- Narrow sidewalk north sidewalk
- Remove area wells.
- Create raised table for pedestrian preferred zone.
- Entrance plaza with seating benches.
- Create landscape buffer for loading dock
- Create pedestrian walk across parking lot.
- Relocate motorcycle and bicycle parking
- Relocate service parking
- Create landscape buffer from Colorado Ave.

Architecture

- Repurpose space to best meet the needs
 of the College of Engineering and Applied
 Science (CEAS)
- Connect to and enhance the rest of the Engineering Center complex.
- Bring the quality of both buildings up to meet campus goals for operational and energy efficiency
- Provide a building environment that supports occupant health and well-being.
- Provide a welcoming atmosphere
- Improve building systems
- Invite daylight inside
- Foster collaboration
- Create flexible spaces for research

Sustainability

- LEED v4 Gold Certification
- 40% indoor water use reduction
- 50% outdoor water use reduction
- 38% energy cost savings
- Energy use intensity of 63 kBtu/sf/yr
- Improve occupant comfort by improving
 exterior envelope
- Increase natural daylighting

SCHEDULE

CP278574 ECAE ECNT Renovation

University of Colorado Boulder

	2019									2020						2021		
1/14/2019	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jun	Jul	Aug
	12345	6789	10 11 12 13 14	4 15 16 17 18	19 20 21 22 2	3 24 25 26 27	28 29 30 31	32 33 34 35 3	6 37 38 39 40	41 42 43 44	45 46 47 48 4	9 50 51 52 53	54 55 56 57	58 59 60 61 6	2 63 64 65	118 119 120 12	122 123 124 125 1	26 127 128 129 130
Phase 1A - Program / Concept																		
DRB Pre-Design																		
DRB Conceptual Design																		
Schematic Design																		
DRB Schematic Design																		
Design Development																		
Board of Regents Review																		
DRB Design Development																		
Construction Documents																		
Bidding & Negotiation																		
Construction - 12 Months																		
Owner Move-in -August 2021																		

PROJECT OVERVIEW MICRO-MASTER PLAN & SITE PLAN LANDSCAPE PLAN GRADING AND DRAINAGE PLAN **ROOF PLAN BUILDING ELEVATIONS & SECTIONS SUSTAINABILITY** DISCUSSION

MICRO-MASTER PLAN

LANDSCAPE ALTERNATES

SCHEDULE & BUDGET MICRO-MASTER PLAN & SITE PLAN LANDSCAPE PLAN GRADING AND DRAINAGE PLAN **ROOF PLAN BUILDING ELEVATIONS & SECTIONS SUSTAINABILITY** DISCUSSION

LANDSCAPE USE AND CHARACTER

(3) SHARED USE DRIVE

4 PARKING/SERVICE

Engineering Center ECAE ECNT Renovations | University of Colorado Boulder | 10

LANDSCAPE PLAN – NORTH EDGE

LANDSCAPE PLAN – EAST ENTRY

LANDSCAPE PLAN – PARKING LOT

SITE SECTION

SITE SECTION

Engineering Center ECAE ECNT Renovations | University of Colorado Boulder | 16

PLANTING PLAN – NORTH EDGE

PLANTING DIAGRAM - NORTH EDGE

Thin Leaf Alder

Red Coralberry

Autumn Brilliance Serviceberry

Mahonia Repens

Arctic Fire Dogwood

PLANTING ELEVATION - NORTH EDGE

PLANTING PLAN – EAST ENTRY

PLANT SCHEDULE EAST ENTRY

PLANTING DIAGRAM – EAST ENTRY

Bakeri Blue Spruce

Arctic Fire Dogwood

Mahonia Repens

Autumn Brilliance Serviceberry Gro-Low Sumac Triumph Elm Engineering Center ECAE ECNT Renovations | University of Colorado Boulder | 21

PLANTING DIAGRAM – EAST ENTRY

Autumn Brilliance Serviceberry

Triumph Elm

Arctic Fire Dogwood

Mahonia Repens

Gro-Low Sumac

PLANTING PLAN – PARKING LOT

HARDSCAPE MATERIALS

BOARDFORM CONCRETE WALLS

WITH SANDSCAPE BANDING

(AT ENTRY DRIVE)

WASTE RECEPTACLE

BIKE RACK

(CAMPUS STANDARD)

BOLLARD

WOOD FOR BENCHES AND TABLE TOPS

(CAMPUS STANDARD) (AT ENTRY DRIVE)

COLLABORATION BENCH DETAIL

COLLABORATION TABLE DETAIL

COLORADO AVENUE BENCH DETAIL

LIGHTING PLAN

LIGHTING KEY Constraints of the service of the ser

CHARGING BOLLARD RD) (WITH LIGHT)

SITE PHOTOMETRICS

LOADING DOCK

- Add new bins and pallet storage behind new screen on south edge
- Add ramp to north side

GRADING AND DRAINAGE PLAN - NORTH EDGE

N

GRADING AND DRAINAGE PLAN - PARKING LOT

BUILDING ELEVATIONS & SECTIONS SUSTAINABILITY DISCUSSION

ROOF PLAN

ROOF PLAN

DISCUSSION

BUILDING ELEVATIONS

Existing

PERSPECTIVE VIEW: LOBBY COLLABORATION INTERIOR

BUILDING ELEVATIONS EAST

BUILDING ELEVATIONS South loading dock

Proposed

BUILDING ELEVATIONS South loading dock

BUILDING ELEVATIONS West

BUILDING ELEVATIONS South NT

- Enlarge clerestory hooded windows by extending sill to floor
- Add two new hood windows to Level 1B

BUILDING ELEVATIONS South NT

PERSPECTIVE - COLORADO AVE.

PERSPECTIVE - NORTHEAST CORNER

PERSPECTIVE – EAST APPROACH

PERSPECTIVE – EAST ENTRY

PERSPECTIVE – NORTH EDGE

EXISTING BUILDING MATERIAL PALETTE

Curtain Wall

Concrete – Board Form

Stone

Concrete - Precast

Concrete – Smooth

Metal – Dark Bronze

Clay Tile University of Colorado Boulder

Engineering Center ECAE ECNT Renovations | University of Colorado Boulder | 54

BUILDING SECTIONS

Engineering Center ECAE ECNT Renovations | University of Colorado Boulder | 55

BUILDING SECTIONS

2. BOLD CENTER AND NT

3. LOBBY

BUILDING SECTIONS

BUILDING SECTIONS – BOLD CENTER RCP

Engineering Center ECAE ECNT Renovations | University of Colorado Boulder | 57

EXTERIOR DESIGN

East Corner

Engineering Center ECAE ECNT Renovations | University of Colorado Boulder | 58

Engineering Center ECAE ECN⁺ Renovations | University of Colorado Boulder | 60

Υ ?

Y 4

Y

Y Y 5 25

Y

Y

1 1

N

LEED v4 for ID+C: Commercial Interiors

Project Scorecard

7 2 Y Y

1 2

		INTEGR	ATIVE PROCESS Possib	le Points:	1
		Credit 1	Integrative Process		1
3	24	LOCATIO	ON & TRANSPORTATION Possib	ole Points:	18
	18	Credit 1	LEED for Neighborhood Development Location		18
2	2	Credit 2	Surrounding Density and Diverse Uses		8
1	4	Credit 3	Access to Quality Transit		7
		Credit 4	Bicycle Facilities		1
		Credit 5	Reduced Parking Footprint (v4.1)		2
2	6	WATER	EFFICIENCY Possib	ole Points:	12
		Prereq 1	Indoor Water Use Reduction		Required
2	6	Credit 1	Indoor Water Use Reduction		12
4	2	ENERGY	/ & ATMOSPHERE Possib	le Points:	38
		Prereq 1	Fundamental Commissioning and Verification		Required
		Prereq 2	Minimum Energy Performance		Required
		Prereq 3	Fundamental Refrigerant Management		Required
		Credit 1	Enhanced Commissioning		5
		Credit 2	Optimize Energy Performance		25
1		Credit 3	Advanced Energy Metering		2
2		Credit 4	Renewable Energy Production		3
1		Credit 5	Enhanced Refrigerant Management		1
	2	Credit 6	Green Power and Carbon Offsets		2
?	N				
4	1	MATERI	IALS & RESOURCES Possib	le Points:	14

1	MATER	ALS & RESOURCES Possible Points:	14
	Prereq 1	Storage and Collection of Recyclables	Required
	Prereq 2	Construction and Demolition Waste Management Planning	Required
	Credit 1	Long-Term Commitment	1
1	Credit 2	Building Life-Cycle Impact Reduction (v4.1)	5
	Credit 3	Building Product Disclosure and Optimization - Environmental Product Declarations (v4.1)	2
	Credit 4	Building Product Disclosure and Optimization - Sourcing of Raw Materials (v4.1)	2
	Credit 5	Building Product Disclosure and Optimization - Material Ingredients (v4.1)	2
	Credit 6	Construction and Demolition Waste Management	2

INDOO	R ENVIRONMENTAL QUALITY	Possible Points:	17
Prereq 1	Minimum Indoor Air Quality Performance		Required
Prereq 2	Environmental Tobacco Smoke Control		Required
Credit 1	Enhanced Indoor Air Quality Strategies		2
Credit 2	Low-Emitting Materials (v4.1)		3
Credit 3	Construction Indoor Air Quality Management Plan		1
Credit 4	Indoor Air Quality Assessment		2
Credit 5	Thermal Comfort		1
Credit 6	Interior Lighting		2
Credit 7	Daylight		3
Credit 8	Quality Views		1
Credit 9	Acoustic Performance (v4.1)		2

INNOVA	TION	Possible Points:	6
Credit 1.1	IN: Public Education		1
Credit 1.2	IN: Exemplary Performance Heat Island Reduction		1
Credit 1.3	IN: Exemplary Performance TBD		1
Credit 1.4	IN: Walkable Project Site		1
Credit 1.5	IN: Pilot Credit		1
Credit 2	LEED® Accredited Professional		1

REGION	IAL PRIORITY	Possible Points:	4
Bonus 1	RP: LT Surrounding Density (6 Pts)		1
Bonus 2	RP: LT Reduced Parking Footprint (2 Pts)		1
Bonus 3	RP: WE Indoor Water Use (8 Pts)		1
Bonus 4	RP: EA Optimize Energy Performance (10 Pts)		1

63 22 35 TOTALS

Certified: 40 to 49 points, Silver: 50 to 59 points, Gold: 60 to 79 points, Platinum: 80 to 110

Possible Points:

SUSTAINABILITY SUMMARY AND LEED PROJECT CHECKLIST

To align the project's goals more consistently with the LEED checklist, the design team has created an alternate checklist under the LEEDv4 ID+C rating system. This eliminates the Sustainable Sites category since the scope has limited site work and increases the credit for energy and water efficiency strategies. CU has set a goal of LEED Gold+ for the project. To meet this goal, the following checklist has been established as a guideline for the project. The project is tracking 63 points; a minimum of 60 points are needed for Gold certification. With additional points being vetted, the team is confident in our ability to deliver a LEED Gold project.

Integrative Process

• In early design, the team will identify opportunities to achieve synergies across disciplines to improve energy efficiency and water savings.

Location and Transportation

 By utilizing an exisiting building, the project will meet the sensitive land protection credit. The team will utilize the CU Master Site LEED credits to capture points for development density and community connectivity and quality transit. The project will also benefit from CU's extensive bicycle and pedestrian paths and will install bike racks and provide shower facilities to encourage public transit. There is no new parking in the scope of the project in order to continually reduce the campus's parking footprint.

Water Efficiency

- Irrigation demand will be minimized, and ditch water will be utilized to reduce the need for potable water use
- High efficiency flow and flush fixtures will be installed to maximize indoor water use savings
- Domestic hot water and the industrial water from labs will be submetered

SUSTAINABILITY SUMMARY AND LEED PROJECT CHECKLIST

Materials and Resources

- Materials with high levels of recycled content, FSC wood, sourced regionally and those that provide transparency regarding human health effects and environmental impacts will be given preference.
- Materials that carry Environmental Product Declarations (EDPs) will provide the opportunity for comparison of embodied carbon
- A construction and demolition waste management plan will be established and a diversion rate of >75% has been set as a goal

Indoor Environmental Quality

- In order to promote superior indoor air quality entry way systems will be installed, interior cross contamination prevention will be designed for, MERV13 filters will be installed, and CO2 monitors will be provided in densely occupied spaces.
- Paints, coatings, adhesives, sealants, composite wood, insulation, and flooring will all be specified as low emitting and will meet the California Department of Public Health Standard Method v1.1 2010
- A construction indoor air quality management plan will be established to ensure SMACNA guidelines are followed and absorptive materials are protected.
- A high level of controllability will be provided to building occupants for lighting and thermal comfort and ASHRAE 55-2010 will be met.
- The team is evaluating further opportunities for views, daylighting, and acoustic performance.

ENERGY GOALS AND CURRENT DESIGN

- 38% energy cost savings
- Target site EUI of 100 kBtu/sf/yr for labs and 25 kBtu/sf/yr for offices
 - 63 kBtu/sf/yr
- Current design
 - R-38 roof
 - Existing concrete and sandstone with 3 5/8" steel studs and R-13 batt + 1.5 in continuous mineral wool U-0.044
 - New Glazing: Triple pane with low-e on surface 2 and 4 with argon fill
 - Building average LPD of 0.5 W/sf
 - Daylighting in closed offices
 - Energy Star computers in computer labs
 - High performance VAV system
 - Campus chilled water and steam
 - Direct evaporative cooling on non-lab VAV
 - Low pressure duct design
 - Wind driven exhaust
 - · Energy recovery on laboratory exhaust

- Current Design
 - 22% energy cost savings
 - EUI of 82.5 kBtu/sf/yr
 - 23 ID+C energy points

Annual Energy Costs by End Use

ENVELOPE

This tool displays the impact of glazing geometry and U-value on occupant thermal comfort during winter months in the absence of perimeter heat.

10

0

2

Case 2: 5.8% PPD

4

6

Occupant Distance from Façade (ft)

- edge spacer
 - No convectors

Engineering Center ECAE ECNT Renovations | University of Colorado Boulder | 66

12

10

DAYLIGHTING

Sidelighting Strategies

- Glazing added to increase daylight
- Specify a glazing with a Tvis of >45%
- South windows: Provide interior blinds for additional glare control

Toplighting Strategies

- Space tubular daylighting devices at 1 to 1.25 X the ceiling height
- Tubular daylighting devices in areas that are shaded by the tower will have reduced light output

Engineering Center ECAE ECNT Renovations | University of Colorado Boulder | 67

KONVEKTA – HIGH PERFORMANCE ENERGY RECOVERY

- Current Design + Konvekta
 - 39% energy cost savings
 - EUI of 63 kBtu/sf/yr
 - 25 ID+C energy points
- High first cost
 - Simple payback of 12 years
- Required to meet energy cost savings and EUI goals

